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1. ABSTRACT

1.1 Objective

The objective of this effort has been to provide to
image processing systems, such as the RADC AFES (Automatic
Feature Extraction System) and MIES (Multi-Imagery
Exploitation System) testbeds an increased capability for
discriminating tactical targets from the surface background
in thermal infrared (IR) imagery. The approach has been to
investigate the present theories of the thermal emissivity
and reflectivity of natural surfaces and to apply these
theories to the development of a background model. This
will hopefully lead to the construction of algorithms to be
used as a background information filter to aid in the

separation of targets frcm background.

1.2 Background

Target detection for thermal IR imagery is usually
accomplished by pixel 1intensity thresholding routines. hct
targets (vehicles with engines running) appear as high
intensity {(bright) areas on IR imagery. A threshold limited
detector shows all pixels above a specified intensity value
as targets that have, at the time of 1imaging, a large

temperature differential from the background. However, when

a significant temperature differential 1is not present

targets are very difficult to detect by simple thresholding.

Y

EA Al T Bl lcEin el sand ity

.

~

TR AR ol

AR NS

R (O

A
UL IR R

N @

0
-

H

Ve
Mt
et
LPLIG I Pl




LA AP 4 SRk o= il “a A~ i i St gt g AL har A Al ol vt el it ik ad Nl T el el bl A N it A It i T At Bt A - v e e W -

.

A
w
(9]
C
@]
i)

This effort has addresseu the problem of detecting
targets which are <close to ambient temperature. This was
done by modelling the background and by using the model as a
base for developing an understanding of physical processes
and their variations, which will.(with further work) lead to
tne construction of a filtering algorithm. This algoritnm

would be wused to eliminate the background information

L causing any obJjects or targets with characteristics

! different from the model to stand out. We:

a. Investigated theories of emissivity and reflectivity oI

natural surfaces and determined which would best fulfill

this effort's objective.

b. Adapted chosen theory to an imagery format.

c. Developed a simple model which simulates the emissivity

-
[j and reflectivity of natural surfaces, leading to an
r}: understanding of the physical factors (and their
[ '_.
F‘ variations) controlling the remote sensing process.
ﬂ: o Developed an algorithm for the model, to study major
I‘..'-
L: remote sensing variables and their random and systematic
F, variations, so that advances may be made towards =
b ) .
S developing an optimum parametric envelope for data -
acquisition and analysis. ji
. -
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e. Made recommendations for further relevant wor-.

f. In this 1initial examination of the problem we were
forced by lack of data and by funding and time
constraints to make the following assumptions for

numerical calculations:

(i) goniometric 1isotropy of +the target and Dbackground

emissivities.

(ii) spectral invariance of the emissivity of ground target

4

and background materials. -

P

}"M

(iii) transmission tnrough a homogeneous atmosphere, using o

t? ' typical published data. -

e v
- (iv) zero atmospheric self-radiance

Further work is needed in which improved simulation models
are used. Indeed, an end-to-end simulation of the remote
sensing process is needed. It is necessary to consider the

interaction of sensor point spread function witn <ne

- nztercgenecus field of view: something which was not

possible in this project.
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2. INTRODUCTION

Thresholding as a technique for target detection,
identification and tracking and possibly for target
quantification is of 1limited use. It is a technique which
is not suitable for situations where the target differs by
only small temperature differences from the background ang
for situations where both the target and the background show
variations 1in radiance which can approach or exceed the
differences between the mean values of the temperatures of
the target and of the background. Under such situations,
neither thresholding nor (probably) any other form of
conventional signal processing can be useful in contrast

ennancement or in target extraction.

One purpose of this study has been to concisely and
clearly state the established principles which govern the
detectability of different targets from each other and from
their backgrounds in order to ©better understand factors
determining the parametric envelope for optimum data
acquisition and extraction. The reasons for this approacn

will become cliear later in the report.

Those factors controlling the remote sensing process

<

all .need to be considered in concert, since the variance in

sensor output obtained when viewing the target as compared

to viewing the ©background will depend wupon the variance in

cach of those parameters contributing towards the sensor
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output. These are, for example, target and background
emissivity and their variances with angular regime and with
slope, aspect, soil moisture, microclimate anc wiirn =&
variety of other environmental factors. Also importent arz
the variability of atmospheric transmission 1in the bandpass
or combination of bandpasses wused to observe the target and
the background; transmission (and atmospheric self radiance)
including the presence of scene obscurants . The interaction
of the spectral radiance from the target with the spectral
response of the sensor will be important in determining
sensor output. The polarization of the radiance from the
target and its interaction with the atmosphere (depolarizing
effect due to multiple scattering) and with the inherent
polarization of the sensor will be important in determining
sensor output. ©Sky radiance will be an additional factor in

determining composite sensor signal output.

In the case of a heterogeneous scene, consisting of a
number of scene elements, each of which has its own angular
anisotropy in emissivity and in bidirectional reflectance
fcptical reflective regime) the point spread function of the
detector or of each element of the detector (in the case of
an array) will interact with the heterogeneity of the target
and with the angular disposition from which it (the target)

L e

is viewed.
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Sensor ncise, optical effects and stray radiation NED
R
! within the sensing device, tracking errors, the effects of el
U
Sy
zky radiance, cross-talk between different elements of an Qq
array, the magnitude and dimensions of the point spread -
Lol
) 3 - - . -

function and 1its interaction with the composite scene, r
consisting of a number of different scene elements will all ﬂq
Rt
effect the overall output signal obtained for each pixel 5
sl
viewed by each instantaneous field of view, and will “4
therefore affect the accuracy with which target and o]
o
background may be discriminated. o

, .
Due to the short duration of this contract, it was RS
considerec important to consider those elements most ij
important to the development of the ideas prevalent, indecd T
predominant 1in the statement of work. To this end, -
)
classical blackbody radiation theory, published atmospheric l;&
transmission data and multivariate statistical analysis were ]
' 4
: used to determine the relative advantages of single band anc }j
two-band data acquisition techniques for target detection, Y
Rk
tracring and quantification. To the extent that detection ;ﬂ

O
'-
P
R
PP v STY

0.
2}

cnsi

n

rad tc be s3ynonymous. Tne «ffects of atmospheric

-]
b - ‘

self-radiance and the effects of the point spread function

Jere not consicered for reasons of time.
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Mathematiczl analysis has Dbeen performed for singie
band and for band ratio techniques in order to determine the
feasibility of target discrimination at 1low target-to-
background temperature differences. The examples selected
are specific to a limited range of target and background
emissivities, which are considered to be Lambertian.
Atmospheric transmission is considered to be uniform and to
consist of <certain pre-selected values taken from the
literature as typical. Variances for these parameters have
been selected from an examination of the 1literature (e.g.
the Infrared Handbooklé) and are considered to be reasonable

for a first order analysis.,

A literature survey of the current state of the art as
repcrted in the unclassified literature has been performed
and 1s included in the discussion. Conclusions may be drawn
with respect to promising new avenues of research for
improved target tracking and discrimination, for the
development of an optimum parametric envelope for data

acquisition and analysis, for optimized target detection

"3

tracring and gquantification. Suggestions &are mads o
continuation and extension of <thnis work in related areas
which we had no time to investigate in this study such as,
for example, dynamic viewing using staring two:dimensional
pyro-electric or quantum effect arrays using CID or CCD
devices. While the reported 1literature shows empirical

comparison and evaluation of dynamic viewing of selected

'2ts under 1deal conditicns, it is cuengidered that
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more extensive modelling studies are required in orz=r - -

determine the optimum parametric envelope for using two-

dimensicnal arrays in a dynamic viewing method of operzticn. O

—."-.

. N . -]

These remarks apply to nadir-pointing sensors, but will -J;

apply even more to reasonably wide angle (10 - 20 degree -

Iield of view) scanred or two-dimensional sensor systems e
viewing or-._qguely towards (say) the horizon from spacs or

“rom asirbternz platforms , or even at ground level.

A major emphasis in this report 1is to point the way

towards future areas in which 1t 1is recommended that

4

rezearch 2fforts be concentrated.

G
D

2. FACTURS CONTROLLING THE RELATIONSHIP OF REMOTELY SEUSED

HADIANCE TO GROUND FEATUKRES

Wnile there has been & consideration of the many

“actors affecting the remote sensing process (e.g.1 ) and a 333
2

considerztion of those factors affecting the selaction of ;;;
Cinipusses Ior smart senscors 223,157 there has been little -;2
\ , . : 4-9 - 10,11 o
wCTK on tne effects of systematic and of ranaom T
variations ~on the accuracy with which targets may be i
discriminated using radiance data. We shall-<consider here ELE
ench of the factors controlling remotely sensed radiance ;;}
levels, the equations describing those factors and the level B

oL owoariation wnich may be typlcally anticipated to occur in
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. : : - L . 64,65 o
To2Tully =211l iliv-. cLTTTn, o Cnolh and aray snow=a Tnin T

up to %0% of the IFOV coula be filled by <cloud over &
Typicar turget, terore tine resulting  plixsl Wil D
recognized as cloud, using current NOAA AVHRR Gats sorssning
algorithms. Cloud contaminated pixels, once recognizec, are
discarded frcm further analysis, since there is no accurzate

wi:y TO correct for cloud without maxing assumpticns apoutz

40

T
s

degree of <cloud contamination of flagged pixels. A
gualitative illustration of the effects of cloud
contamination is to point out that areas adjacent to cloud-

covered regions usually have a modified <color balance on

intaractive computer screens. That 1is, such areas may be
viewa2d as "aifferent". However, a far more guantiztative

LoSU o tnan numan via2wing oI an interactive computer screen is
Goaed TL o wrifte pix2is whicn zre cloud contaminated, or are

suscectaed of being so.

Invezstligations are currently underway to study the oif-

nadir effects of unresolved cloud and haze on target

¥l
3

dlzerlimivztion for atmospheres of dJifferent turbidity.

3

[

4.0, The effect of randem vs. systematic  errors

recorded radiance levels.,

£Z pointed cut by Duggin 66 and by Duggin, et. al

67

Lio.r2  are  botn systematic and random errors in radiance
levels recorded from targets which are to be discriminatad
ard yunntiiiod. The gystenatic etiects may be corrected for
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Tnis rciiowse ICCT ne  general cace 0of a mixed -

(heterogeneous) pixel, as shown in Table 1. Here a, is the

Iraliion oL une instantaneous Iield of view (IFOV, filled by

-

v

TurgEt A, while a . is tne fraction ¢f the IFOV filled by
I cloud. Thus, in addition to atmospheric effects mentioned

previously, copaque cloud (or haze or cirrus) can alter the

3

absolute radiance level recorded winen viewing a given target
I and may (depending on tne spectral reflectance
characteristics of the cloud) alter the spectral

distribution c¢f target radiance.

Cloud which fills only a portion of the IFOV of the

detector does not result in a radianc level or 1in a
spectral distribution in radiance recordsed by ssveral
. crnannels, which characterizes <cloud. nowever, unresolved

cloud can have the same effect as cirrus or haze, namely to
distort the spectral radiance signature from the target,

which 1s to be discriminated from 1ts surroundings or

quantified in some manner. while the photointerpreter
ralies upon shapss, textureg, relative positions and
L TionS s wernl S on COo1or  wng brigsnun=ce, comMpuTaEr
nlaceliiravion of multispectral fwmnpr=ry relizs only upon the

digital counts recorded from the target 1in each secnsor

channel, Therefore, unresolved cloud, <cirrus and haze can
result in errors of cmission and/or of commission 1f tnzre

is not some means of detecting the cloud, haze or cirrus-

-+

contaminated pixels so that they are not considered in the

-

T o~ £ e N N e ~ . [N H 3 - - -
analysiz, ©0 13 r,  Coouc Scccening alsoriinms arc nov
) . ) e K ) o . . B Lo . . RS - : «
. - - - .7 . . T - CR N . . N b - -.“ - ->--
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sele arezs  4nd will permit Comzarisons 1o bz magz LeTeeer

images obtained over different areas. 5ucn corrections are

necessary to permit analysis for monitoring cnrange in ground

R W AN

cover over large geographic areas and will enable

quantitative evaluation of temporal change in the values and

. ) . fe
ety
R

in the spectral distribution of recorded radiance.
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Such angle-dependent effects are systematic and may, to

v a
[
‘s

some extent, be corrected for. This may be achieved by

]
Sty
CS
'y

parallel empirical and tneoretical (modelling) studies.

ot

¢

PR T

B.1.e. The effect of cloud and haze.

Cloud, haze and cirrus may be present in constant or in
predictably varying quantities across a scene, in which case
they will modify recorded radiance as reported by Duggin,

4 -
et. al 64-67 . The overall recorded radiance signature in

oy

andpass r will be, from a given target (A) (given that tne
cloud 1is a Lambertian reflector with a spectrally invar-

iant reflectance factor RC).

A2 T N
NS_ = I(x)- (a,x R, (8,4:;08",¢" . . .
r f [f Ax A( 243907 ,47,0) + acx RC) Escatt(9,¢,)\) dg.d¢
' * 0”0

+ LT(a,;,A) {aARA(e,c;e;clk) + acRé}‘l

2z n "n
" n
X exp - a' " ,
f ext(8",4" ,1,2)de" -d¢"-dz[ + Lpath(9.¢;9'.¢'.k)d6°d¢ +dA
0 “-n”70
- . :-Tl’ 0

P P e
—_— e e el e el

Ay -

.|

-a_ 2 a’a

I(2)-dx o (3.14) N

Ay

A
a'a s s
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- (3.11). I(xn) is the spectral respcnse of the sensing device
and equation (3.12) may be more fully expressed (sc that the

- relative importance of the abovementioned factors may be

appreciated) as:

A; n n
NS -] L(N. {[ [ R(U,¢9;3" 0 A)E L (BN dude LT(9.¢.)\)-R(’.-xb".if'.*)}
0 [}

| "
LI | W n
xuxp{-/[/ B'ext (6".@",X.z).d8".d¢".dz}+f/ Lp“h(s.@;u',w'.z)ds.w da
&
o & 0

> "

: [ I(A).dA .

A

e (3.13)

! Here the sensor view and azimuth angles are 6' and ¢'

= Not surprisingly, it has been shown that there is a

: significant dependence of recorded digital radiance levels

ﬂ on sun-target-sensor geometry 4-9 for the NOAA AVHRR, SPOT
and MSS5 data a. There are indications 63 that this is also
true for thematic mapper (TM) data. Empirical understanding

) of the dependence of recorded radiance on scan angle, sSeason

A (solar declination) and latitude should lead to an
approximate corfection for these paraneters, perxzitting
radiometric comparisons (and therefore classifications on

) the Dbasis of radiance levels) across images. Such

corrections will also permit quantitative comparisbns to be

made between Iimages obtained at different seasons over the

© - - '-_‘.-.
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There are "zero power wavelengths" (1,4, ) which bound each
sensor bandpass, and at which the response of the sensor is
zero. However, between these wavelength limits, the
response of the detector is not constant. Since the target
i radiance and the atmospheric transmission and path radiance
| alsc vary (each in a different manner) across each bandpass,
intTeractions between the spectral response of the sensor,
. the spectral radiance from the target, the spectral
backscatter from the atmosphere and the spectral extinction of
the atmospnere along the path rrom the target to the sensor

may be anticipated. This has been pointed out by Slater59’60 —

10,61,62 .

I
.
o

and by Duggin, et. al

'
-

PRLAL
e

Tne signal output o the sensor (normalized sensor

-
LI |

y
_j__ll

response) is given by the equation:

r

N Efi
3 j—h _ ;{.;:_1
'! (3.12) ;
. A2 o
N f I(x).dx =
: A1 ::i
]

—d

» .
- where LDQ-,;;T',;‘,K), the spectral radiance incident on the o
S

sensor 1is due to radiance reflected from the target for the ]
sun-target-sensor geometry considered; after modification ;;d

o for the spectral extinction along the atmospheric path from ﬁj%
the target to the sensor, plus the added spectral :ff
atmospheric backscatter (path radiance) for the same target- %}

» sensor-geometry as considered in equations (3.10) and .
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e wnere ' . ", 1 M,7,z) is  the extinction cosfIliciini <t e
altitude Z along the path to the sensor and L (6,¢3;€",¢"',1) o

, path

I is the path radiance scattered Intd thée sensor by tne L
e !
atmosphere in addition to radiance <transmitted from <ine -
od

target at ground level.

.‘.....‘?
. Talak

It may be readily seen that the contrast in recordecd “
bt
radiance between two targets 1is reduced by boiln &timdsSpneric o

extinction and by the addition of a background radiance

IR ., ,,.
. L + N o Tl e A
A ,‘- l I.’ P .

e e’ ’ Ad ik

’

level (e.g. ref. 20 pg. 206). The reason for this is that

RPN R P ,._,.,_
S . o B R
: :- . . S .l' . . -
B f e . PERTE

the level of useful signal 1is reduced by the atmosphere,

while there 1is an addition of purely atmospheric signal

- which contains no useful information.
.. Some correction can be made for path ruadiance and Ior "
1 . . . . \ . A ‘-,#
atmospheric extinction. However, methods <currentiy usec
sssume that the atmospnere 1is constant across the imagea

4 . . . . -
5). Further, either approximations are maage 1n

D area (e.g.

P S
v e T o

» . e e v

. PR A

P U SR S I

}ﬁ that all signal from low albedo areas is supposed to arise g
o , 4 . -
- from the atmosphere (e.g. 3 ) or several meteorological ?i
_: .: -‘::1
) inputs are required in order to compute the modelled e

"i' ]
. . o 43
'] correciions (e.g. ). . i)
T
e
.., 4
® B.1.d. The effect of the detector. S
The response of the detector is wavelength-
dependent across those bandpasses to which it is sensitive.
L3 In other words, it is not either "on" or "off", depending
N upon wavelength. This is illustrated in Figs. 9 and 1C.
o4
N s e e e 3 R . .'.t ’
e R e T - i e . S -
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gonlom2Iri: nemispherical-directional reflectance factors .

Variaz ilons in gioba. irradiance across an imaged area
will also occur due atmospheric transmission fluctuations
(tnat is, variations in time at a given location will be
similar to variations with space at a given instant in time).
Radiance Irom the ground will also be modified by the

atmosphere, prior to detection.

B.1.c. The passage of reflected target radiance to the

detector.

Radiance reflected from the target may be most exactly .
expressed by equation (3.10). However, some radiance 1is
absorbed and scattered out of tne reflected beam by the
atmosphere 77 - 128 . This may be considered by using a
modification of equation (3.2) allowing for the fact that
extinction along the reflected path may differ from
extinction along the path of the incident radiance falling

on the target. Fig. 8 explains this relationship. Thus, the

radiance falling on the detector is given by:

z T T
LD(8,¢;9',¢',X) e LRSB,¢;8',¢',A)-exp - Jr j’ Jpﬂ'ext(e".¢" JA,z)+d0 " -d¢ " +dz
0 -7 0

n n
) * f f L (8,4;0',0',))d6-d¢ (3.11)
path
0 o




The relationship between incident, reflected and absorbed

radiance is shown in Fig. 7. As pointed out by, for example, "
Kriebel 17 and by Kirchner, et al 52, it is the interaction ii
of the polar distribution of the spectral irradiance field :§

e
with the bidirectional spectral reflectance factor which deter- n:3
mines the angular distribution (and the absolute value at any gs
ziven angular orientation) of spectral reflected radiance. ;3
Thus, equation (3.9) may be more exactly expressed as: ?i

-
»

.l [}
‘v .

e

m m

,..&,-
'y 4y

LR(e ’¢ ,X) =I f R(e!¢;e'9¢',x)' Escat(en¢))‘)’de’d¢
0O 0

v

. ".. X :J’ }1

e
9 g 7

*L(8,0.1) R(0,¢30",6" 1) (3.10

where R(9,¢;0',¢"') is the bidirectional reflectance factor53.

Thus, while equation (3.9) describes the spectral
radiance reflected into a given direction, as a function of
overall irradiance level, equation (3.10) takes into

consideration the polar distribution of the incident

spectral irradiant flux field.

10,11,19,52

It has been shown (e.g ) that the scalar

global spectral irradiance and its polar distribution are

e

time-dependent. Therefore, both the scalar value and the

polar distribution of this quantity may vary Dbetween ky

. ?E
sequential ground measurements of target radiance and éj
irradiance, giving errors in estimates of spectral ~

7

0
i
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Tne radiance reflected intc any polar direction may be

expressed as:

Le(8'00",A)=R(2T 8" 0" ,2)« E(8,8,)) (3.9)

where R(21; 8', ¢'X\) is the hemispherical-directional spectral
reflectance factor 23 , which relates the spectral radiance

reflected into any selected direction (selected oy tne scan

angle and by the ground track of the sensor platform) to the
total scalar (global) spectral irradiance. The angular nota-

tion used is shown in Figs. 4 and 5.

Thnere can be considerable angular anisotropy in the
spectral hemispherical-directional reflectance factor.
Indeed, a polar plot of this factor generally produces a
non-spherical surface, whose irregularity 1is indicative of
the degree of angular anisotropy in the spectral
bidirectional reflectance factor. Experimental evidence of
such anisotropy has already been widely published (e.g.
furthermore , theoretical calculations indeed predict such

20 - 25 ) in a manner which has been

28, 54

anisotropy (e.g.

experimentally confirmed (e.g. ). Fig. ©6 shows the

variation 'of the bidirectional reflectance factor with

wavelength and scan angle for wheat at a growth stage of 3.5

on the modified Feeks scale, calculated from published data27’36'

70 . The solar azimuth and zenith angles areJ taken to

correspond to those for the NOAA-6 advanced very high :ﬁf

resolution radiometer (AVHRR).




aititude (km)
¢ = Rayleigh scattering cross section (mz)

3

n_ = atmospheric number density (m~

)

n_ = aerosol number density (m'3)

A = ozone absorption coefficient (cm-l

)

D3 = ozone concentration (cm km-l).

B.1.b. The reflection of radiance from the target.

The situation at the target is shown 1in Fig. 3. The
total resolved component of radiance falling perpendicularly
on the surface is shown as the scalar quantity E (X). This
guantity will depend upon the solar zenith angle , upon the
various atmospheric extinction coefficients and wupon the

amount and polar distribution of cloud (8711’19’50'52).

There will be some energy which will be absorbed by the
ground target. This is E abs(e',¢',k ) and will depend upon
pclar direction, since there will probably be angular

anisotropy in the absorbing properties of the ground.

The energy reflected in a given polar direction will be
LR (e',¢', A)- There will be a net balance as given by the

equation:

E(A)

n " L L]
f J.LR(O'.O'.X)COB '-d8’ d¢' +‘f J Eabs(e;.oi.X)cos 6'-de’.d¢
0 o0 o 0

(3.8)
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where 2 (€', :",a,2) = :r<e".o"}k.z) + ep(e".w".x.z> + 83(6".0".\,2)

e

(3.3)

¥
3

Here aext (8",%".4,2) 15 the total extinction coefficlent

-
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tﬁr (8".¢",A,z) is the coefficient for Rayleigh scattering.

2 e
4 A g

8 (8'.¢",A,z) is the coefficient for aerosol scattering.

3 (®",¢",2,2) 18 the coefficient for ozone absorption.
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The total irrradiance on the target at wavelength A 1is given

by the sum of the radiance from the sun's disk Lr(8,¢,)

": r
gl
.

and the irradiance from the sky (scattered radiation), see

.
LI I
v e

v .
)

Figs. 2 and 3.
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Here E ()\) is a scalar quantity; while E scatt (8,¢,X) is a

¥
k

polar vector which represents the scattered radiance from

each point in the sky. Integration of the component E (6,9,2)

scatt
over the hemisphere of the sky gives a scalar quantity

B L .
DT T Y .

. " . LA
A

P
Lttt

which represents the total "sky" irradiance. LT(6,¢,X).Cos B

"'-"q
ALY

is the resolved component of the radiance from the solar

"y T
it
L) "_..

"

? disk which falls perpendicular to the ground.
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r’ Approximate values for the extinction coefficients, in

)

L

N terms of reacdily measured pﬁysical quantities are given by

(e.g.) Slater-so.

1

Jatalsla

1,

Tore sl
LA
A SV

4.(h) =g n_(h) x 10 4 (3.5)

;;?:EEJ

) n_<¢h) B
4 8 5 (h) sp<0)-;§—(w (3.6) -

b}(h) = Aij(h)
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B.1 The optical-reflective region of the spectrum

In the optical-reflective region, we shall consider the
remote sensing process 1in three parts; the passage of
radiant energy from the sun to the target, the reflection of
2nergy by the target and the interaction of the atmosphere

with reflected radiance before it reaches the sensor.

B.1.a. The passage of radiant energy to the target.

Fig. 2 shows the passage of solar radiance through the
atmosphere to the target on the ground. The solar zenith
and azimuth angles are datermined by the local time, sesason
(solar declination ¢) and latitude ¢ . In fact, the solar

zenith angle 61is given by the equation:

Cos © = Sin ¢.Sin 6§ + Cos ¢.Cos 6 Cos 15 (TH + - SLN) (3.1)

a3

where TH is the iocal time in hours, TM the local time in minutes and
where SLN is solar noon, the time at which the sun crosses

the meridian.

Losses from the radiant beam from the sun's disk occur
due to scattering and absorption. Broadly, the radiance
reaching the target along the direct beam from the sun's

disk is (e.g. 50). .

Z w b
Le(gadsd) = Lo(g,9.4) exp[- f [ [ Bext 8", ¢", X.Z).de".dQ‘".dz]
0

0 % .
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- effect of the atmosphere, in ora=sr t1c correct for it (e.g.
17 - -
7,37 9). Such models generally assume that the atmosphere
is not turbulent, but raclier consists of a series of stecacdv- )
o
state, layered media, with discrete and constant aerosol, ol
molecular and particle concentrations. ]
e
defore dealing with variations in these quantities, we
Lust Jquantitatively describe the entire remote sensing ;
1 v
process in an overall manner as outlined by (e.g.) Maxwell ™. @i
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some of those factors (on the basic :°f what very limited
experimental data exists). The effect of such variation on
recorded radiance levels, on target discrimination and
quantification, on system design and on data collection and

analysis optimization will be considered.

B.0 Discussion

The interactions occurring between solar radiance
incident on the top of the atmosphere, the atmosphere, the
ground and the sensor are shown broadly in figure 1. It is
seen that solar radiance (LO) incident on the top of the
carth's atmosphere 1is subject to losses 1in each polar
direction (% ,¢ ) caused by scattering (LS (¢, )) and

13-19) during its passage through

apsorption (La(e,¢)) (e.g.
the atmosphere. The total energy .which reaches the earth's
surface is given by the sum of the radiance from the solar
disk, plus the energy scattered from the sky to the earth's
surface (diffuse irradiance or "sky radiance"). The earth's
surface reflects radiation in an anisotropic manner, wnich

20-25 and which has been

has been described analytically
observed experimentally (e.g. radiance
reflected from a ground target into the direction of the

sensor is again subject to scattering and absorption. Some

<

radiance reflected from adjacent target zreas 1s scattered
into the reflected beam and radiance is scattered from the
atmosphere into the sensor ("path radiance" or

"backscatter"). Models have been developed to describe the

y
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SmT .TrCully, using regression equations developeu o )
6,68 T
studying a large volume of data . However, the nature of e
=
random errors prevents their correction. The best that may -
be achlieved 1s to determine the magnitude of the random =
errors and to d:stermine their effect wupon feature s
. Cas . o 10 ot
identification and guantification . Tne effects on sensor ce
output of random and cystematic errors 1in various remoix E
sensing variables are shown in <flow-chart form for <tne —
optical-reflective part of the spectrum in Fig. 11 and for "
tre thermal infrared region in Fig. 12. o
o
] , L. . —d

Thus, in the event that two targets, A and B are to Dbe

discriminated and there 1s no visible cloud in the sky, tnen
the radiance difference nceded to periorm 2 discriminztion
with 95% confidence would be given by the expression

1/2

HW {(L ) - (L )} O Szvr\ 1 {(ULL)A + (OLL)B}

where H.W. denotes half the width of +the 95% confiaence

(3.15)

interval on the difference (L ) - (L_) and where {(L.) &nd
r r
- A B A
(L ), are the mean radiance valu2s in bandpass ¢ Irorm
l. - D
P;- targets A and B. The means are obtained in each case Ireom o
[
R
f pixels. tg g .1 is the student factor where (m) is the
’, . ’
L’ number of observations used in estimating (Lr);x and (Hr%
o The evaluation of equztion (3.15) using equation (3.14)
T would be complex. However, if we use the <concept oI
~
-
e hemigphnerical-directional reflectance, in equation (3.9)

ihen we cun cbtaln a4 simple solution from the works ot
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o dere we refer to mecn raciance differences at & specific

F wavelength A, instead of across bandpass r. T is the

Q; atnospn2ric Transmission. Note that we assume a fracticn of

cloud a, in the pixels over target A, while we assume a
1

fraction of cloud a. in the pixels over target E. This

formula would need +to be computed for each scan angle, C )

+

putting in the wvalues <for each variaple relating tc the

appropriate sun-target-sensor geometry.

It should be noted that if we consider the radiance 5}
-
output from the sensor (recorded radiance rather than the —

radiance incident on the sensor as considered above), then ..

for each wavelength » equation (3.16) becomes, more fully )
o
expressed in equation (3.19) (next page). These equations -4

enable us to compute the necessary mean radiance difference

between two targets for target discrimination with a 957 zy
probability of being correct. The computation is unique to
each sun-target-sensor geometry and will depend not only on o
the angular anisotropy of each target reflectance, but will
alsc depend upon the angular anisotropv of the atmespheric
scattering functions. The computation is also sensor-specific.
In detail, the sensor output difference 4 for m pixels
- g

obtained over each target, each partly filled by a proportion

of (Lambertian ) cloud would then be: ' o
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A Az :
J I(X)-fA(A)-d\ - 1(1)-IB(x)-dx e%
s = A Ay ) :.]
(3.17) -]
Az
f L(A)-dA 2
LY b
A, 5
e
— — . s
A)- - . R
I(}) {LA(A) LB(A)} dx ]
A :
s = ! (3.18) %,
X, 7
I(\)-d) "3
A :
In order o be 95% confident that the two features are ﬁi
indeed seperable on the basis of reflected radiance using a ;:
bandpass r, whose upper and lower zero-power wavelength ﬁ:
«.:,;
limits are A, and A;, the difference must exceed the value gD
-l
of the following function: ;ﬁ
=g
. A2 . )
- - L"'_
- How, { 10T, 0 - 1) T .da %
P .. A B g'_
r - ol .
[ o {‘LL) - (L) } - (3.1%) 22
".‘ A B A, u
r: 1(3)-dA -]
b A o
o
° _
where H.W. {(Lé A (ié)B is the minimum recorded radiance

difference A necessary to be 957 confident of discrimination

on the basis of sensor output. Of course, we can perform

such calculations for any pre-determined confidence level.
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Factorse which will control the discriminability of

targets, where

H.W. {(L;) - (L') )
T
Discriminability = D.F. = A B

function IAI

66

as given by (e.g. Duggin ) are several. T nese effects

are mentioned but have not been investigated in this study.

For discrimination to be possible D.F. < 1.0.?

(i) relative areas in the IFOV occupied by unresolved cioud

and by targert.

(ii) atmospheric extinction and its variation (here shown as

atmospheric transmission 7 ) for the sensor bandpasses.

(iii)} variation in the =r=zlative proportions of the IFOV
. . , 64-67
occupied by the target und by cloud.
tiv) patn radiance for tue -..sor tandpasses anc  Its
C A 64
vaEriatlion across tne ilivioen aren, le.g. )
(v) relative altedos vl the targes 20 bLe distinguished in

the bahdpasses used and of the cloud present in the

IFOV where unresolved cloud exists. 64-66.

(vi) wvariations in atmospheric turbidity and the average

68
value of this quantity across the imaged area. (e.g8. )
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L .iiJ Tne overall level and spectral distribution oz gicb:l

irradiance.

(viii) The spectral responses of tne sensors 1in those
o bandpasses used, and the interaction of such responses o

. e
= with the target radiance. .4

. ey e o
,7

(ix) random variability of the spectral bidirectional

refiectance factor across the sampled area. This can
be caused by (e.g.) topographic variations, texturzal

variations, slight changes in pixel composition, etc.

(x) the dependence on sun-target-sensor geometry of the

spectral tbtidirectional reflectance tfactor, =spectral

path radiance, spectral atmospheric extinction and

target discriminability. Due to angular anisoiropy o
ground reflectance, it may be that discrimination of
some targets is optimal (target/background contrast is

maximum) at certain angular regimes (i.e. at certain

o LA ]
v e [ .
P S S N )

solar elevations and azimuths and at certain, possibly i
off-nadir view angles). f;
.' ‘._ .:
: -
EL (»i)} The interaction o0of thne point-spread Ifunciion oI ine -
N S
- detector with <the neTerocsens.iy Cl ine pixel, v
- S
= consisting of different scene components. This point o
i. s
g is made clear 1in Fig. 13. Here, the point-spread -
* Y
! function of the sensor is shown superimposed upon a O
b RN
Ei nominal pixel (projection of the defined earlier (IFOV) 1
,!_ on the ground) containing several different scene .
%
.-
p.- .
b . .
7 .~
hh-v O—
&
b . . - PR LIS - -
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elements. Each scene element will havse ite own,
different angular spectral reflectance and emisgsivity
anisotropy and so the movement of fhe sensor sucn tnzz
the IFOV is shifted by a fraction of a pixel will
produce a considerable change in sensor output. This

important point has so far received very little
attention.

66, 67

An example of the effects of sczan angle,

unresolved cloud and atmospheric turbidity on contrast ratio

r; is shown in Figs. 14 (clear atmosphere: meteorological range >

50 «m) and 15 (turbid atmosphere: meteorological range < 1¢C

s«m). Here vegetated targets (70% wheat, 30% soil) and 102%

8

*.l wheat at a growtnh stage of 3.5 on the modified Feeks scale
(boot stage) are considered. In each <case, a vegetative

= index (VIN) 1is used to typify the target: the VIN used is

tne radiance recorded in AVHRR band 2 (0.713-0.986 um;

refl

1

cted infrared) divided by the radiance recorded in
AVHRR band 1 (0.570-0.686 um; visible). Three facts emerge:
firstly the contrast ratic (VIN MAX /VIN MIN ) 1is greatly
reduced by unresolved <c¢loud (and <therefore by haze and

cirrugy, Secondly, the contrast ratio is scan angle S

o
e

dependent. -~ Thirdly, the contrast ratio is reduced in

!
e

a scan angle-dependent manner by unresolved cloud for a turbid

(meteorological range < 10 km) atmosphere as compared to a

r

v o e
DU DU S AT

clear (meteorological range » 50 km) atmosphere.

o
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THZ THERMAL INFRARED REGION F THE SPECTRUM

i Evidence exists to snow that there 1is angular
oS anisotropy of the emissivity of ground targets 71-76 . In
the case of emitted thermal radiance, ‘atmospheric

attenuation consists principally of absorption, so that

equation (3.10) should be re-written, for emitted thermal

infrared radiance at ground level, as: o

- 4
Lg(8',0',0) = €(8',8"',1). W (T,}) (3.20) .

ir where e (6 ';¢ ', X) 1is the directional radiant spectral ij
emittance and W(T, ) is the spectral radiant exitance of a ~

e
. .
- O ey

blackoody at temperature T (degrees Kelvin). The

assumption here 1s that the radiator is a graybody.

e
PSRV

Therefore, in the case of emitted thermal radiance, the

!’ equivalent equation to the optical-reflective equation (3.11) s
- Ls:
L

Z % =
LD(e"¢"A) = LR(e',¢',A).exp{3f;Jr /; S'ext(S",¢",A,z) de'.d¢".dz
- .

L ]
, + Lsky (6',¢',2) (3.21)
" 3
&
] '

- -~ - - -' . . .
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Here, it is assumed .at the predominant atmospneric effect

. . 77-89, 95, 96, 100, 103 , . .
is absorption, e.g. . There 1is aisc

an atmospheric self radiance term:

g',0" A
Lsky ( & )
This situation is illustrated by Fig. 16. %ﬁﬁ

The interaction of this spectral thermal radiance with

the detecting device is given by the expression for the recorded

radiance NSr.

= ey k]
OH:{

) " " . LI "'d
B' o (8 %" 2) - dE d¢ Z}

Az o
II(k) [s(e'.qv',x)'W(T.A)-eXP{-J-
x1

+LSky (el'¢|,)\)] d\
NSr = .
A2 (3.22)
.[ I(A)-dA
- e
Al )
N
RS
A
A
|
~=
X
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Equations (2.15) ard (
course, Ior tne tnermal

reflecziv= case. Here,

covariance terms.

HW {L(X)A - L(A)B}

T
-
o

Vi

'Zizkjiy t :Nn:a“._n“u_-ﬁ

B v e
s R e B

S S S e S

3.16) would also be different, of

infrared case than for the optical

ror

~we ignore the (generally trivial)

5, .X,Y v
-

i,
PR ¢

2

t (

-O t 1 1 Al

= 2B R et sk xRt et s, ) T, ) 1
I T EpCa

+(eg? 510 s+ Tl (60,00 :5":
B "I’ ] T S !¢ ’ ) SE c > W(TB,\) '»,4
< B"B -
r2s % .
sky“sky (3.23) ]
o
3
where S_ S S and S represent sample N
Tt G €p€p LskyLsky 2
variances in atmospheric transmission, emissivity of target .iq
A, emissivity of ©background B and sky radiance Lsky . *%
o~
Atmospheric transmission T is given by ;ti
T = exp {-fzf ; B' o (80"2) -de"-dc"-dz}
0 “n 0 o
More discussion will be made of this deriva*ion later. QJ
A
Equation (3.23) could then be substituted into 'jk
equations (3:18) and (3.19) to determine the value of a fli
discriminability function (DF) such that: :jq
. o)
D.F. =HW {(L "), - (L
: (L )A (L )g} T
=
(3.24) -
.4
—
-
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and D.F. muct 2lwove i -:8¢  than 1, for discriminaticn <

target from backgrouna with a 95% (or some cther pre-

determined level) of coniicence.

The well-known physical factors controlling the remote
sensing process have been discussed and represented in
relevant form in this section. The relative importance of
some aiready reported random ana systematic variations on
recorded radiance and on target discriminability and
contrast have also been discussed. These factors need to be
porne in mind when designing instrumentation or when

optimizing imaging conditions.

Assuming that the wavelengths for the bandpasses used
cv The sensing device have besen best chosen for the task at

nand, (and tnhnis

-~

a5 been the case only so far as 1is possible

with limited data) it is possible that discrimination of the
target will ©be more effective for some sun-target-sensor
geometries than for others. It 1s also likely <that tnere
are upper limits for unresolved <c¢loud, haze, obscurants

and cirrus for which discriminetion of targets of different,

selected albedos 1s possible. In order to understand the ;ﬁj
Rt
principies controlling both the systematic and random f:;
R
variations discussed above, which control the accuracy with *;i
==
whnich selected targets may be discriminated, it is necessary ) }
to use both empirical and mathematical simulation studies fﬁi
for the atmosphere, 37-49, 90-128 ¢, sensing devices, 2,3, {L%
T

5-10.14,59-62,136,164,241-266 L o ]
)= 10 27 136,164, 261206604 for the variability of re- o

- , 10-12,204-24 s

LE cltecth oon ooconerast . s

.1 M - b : <
Cwaed Uaalalt s Tl
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ordey to test and calibrate the mathematical models it -

necessary to have sufficient measurements of the reflectancc
factors and emissivicty of the earth's surface at various an-

Zular gevmetlries. Unfortunately, few such data current.y ex-

L.

ist and there is little agreement on the methods by which such

critical data should be obtained.

LT P EPRY S 5 AR

N I

ct

While it iz necessary Tc be ©pragmatic regarding

Vo

best use of existing data, it 1s suggested that few advances
in sensor design, in data collection optimization or in an

understanding oI tne effects of random and systematic errors

l. PESTTIVATIY )

on  target discriminability will be possible until

"
i
. S

~neoreticail studies are pertormed To parallel present

[N

¢

1

r

e
mn
ct
o
Q.
—
[19]
n
t
O

menta increase our uncerstanding of thec:ze

4ol

ors discussad  apove. Only such studies will make

b
w

(@]
fa

possible the collection and analysis of digital
multispectral radiance data so as to minimize errors of
omission and comission 1in automatad or semi-automatad

analysis.

4. SELSURS

Sensing devices can consist of cither scanners,
pushbroom array devices or staring arrays 129-203, 261_286.
The scanner has the advantage of utilizing a limited num-
ber of detectors whose spectral response and point spread

function may be relatively well known (although this is

arparently not the case for (e.g.) the Landsat Multi-
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succsral scanner (¢1SS). Neither the MSS, nor tne TM hac

documented inherent polarization measurements performed,

nor was the spectral response oI each of the channels of

each of the bands on these devices well documented in the
59-62 -

open literature. (e.g. ) mm%

'-",.4

As discussed in section 3, tne point spreac lunctiosn o2 =

e . \‘(!V

2 sensor means tnat the central porticn o1 tne (:rlV, 5n:8 = T

S Ces . . L s §

nigher sensitivity than the outermost portions oIl the IrCV. 3

- . . " . T

ror a heterogeneous field of view or for a target wnich does e

not completely f£ill the field of wview, the position of a -]

small (sub-pixel sized) target with respect to the peak of -

tne point spread 1unctlion is tnerefore obviously importaact. f[

This fact appears so far to have received relatively little vfi

—d

attention and it 1s recommended that more work 1s needed v 3

here. Pushbroom scanners may consist of a single array of ]

P . . . . . -':"1

sensors which obtains information 1in one spectral bandpass 7

o

or may consist of a2 two-dimensional detector array placed efi

behind a wedge 1interference filter where the axis o

perpendicular to the ground Iracs cltalnz gpatially varsin:g '}%
intormation from difrferent pixzlz znd the axls alongiracs

L

obtains intormation in different wavebands. Such a devic

clearly entalls ccnsiagerable problems in so far as high daza

e
e e 'JA‘L

rates involved, coupled with varying instrument spectral =]

resp nges boetween detectors, varying filter transmissions B

2

in front of each of the sensing elements, absoclute detec- 1

N

“or calibration variation freom element-to-element and o

- 4

=

. - - . - . B A

PR PR PR A T G P T NP Y PO P IR PP PP LA PP U S UL O ORE N W T LWy ¥




N

Dheric Jio...o-5.oen ons allowed to varv Zvom 0.8 to 1.00 in in-
crements of  0.02. For band 2 (1:.0 - 12 im) the atmos-

pheric transmission was allowed to vary from 0.60 to ..00

in increacnze o0 0.05.  This resulted in a range of ratios
(15/77). lie coeflicients of variation in both 1, and 1,

was allowed to vary from 0.01 to 0.05 in 0.01 increments
which was an estimate based wupon the literature.

The discriminacion function (D.F.) described in ecua-
tion (5.1Y) was plotted as a function of the relacive at-
mospheric transmissions T and o in the two bandpasses
used and as a function of the temperature of the target
T,. The target temperaturce was allowed to vary from 265°
K te 2837 K in one degree increments. The background tcm-
perature was alwavs 275° K. The target was assumed to
have a speciral invariant emissivity. Examples of the
three-dimensicnal plots are shown in Figs. Cl to C3. The
vertical axis i1s DF, while the horizontal axes are the
ratio (7,/:,) of the atmospheric transmissions in the two

bands used and the target temperature TA' Fig. Cl shows

o
o
the casz where the correlation coefficients between the

recorded radiances ig 0.01, while the coefficient of variation

in each of the atmespheric cransmission values 1, and T,

Zor bands 1 and 2 is 0.01. rfig. CIZ shows a case which 1is
idcntical,-except that the coefficients of variation for

Y and -, are 0.05: <clearly the increased variation in

atmespheric transmission reduces the discriminability
(i.e. increases D.F.) for any given temperature. The

D.F. 1s relativelw ‘nsensizive to 1,/ 1 in eicher cnse.
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simitarly, for rarget b :
2 2 > .2 T
- \ £ \ . E. o
c88,.\ /BN .1, /BB, . TN/
; A = t o e { — [N
S =i J S' +\ 'E_ __—'l S_ - .
Fa W - - \ o / _ S B/ ‘.ll ‘2;2 ~._-
5 \5521 \ Bl/ \ .1/ l 1 BBZ]. \ 1 \ / ‘_‘:
[
2 2 '\-ﬁ
L I S DA / x -~
=" . = —5] "l ST R - N
L DD, 2, EORE 22 11 -
21 1 L o
- =
()-18) 4
"
,_I
wnere DE is <thne blacrsbody radiant emittance from o
21 :
o
tacegrocuncs B in bana 1 and EE,, is the blackbody radiant .
emittance from blackpbody E in tand 2. ]
“ne discrimination runction D.F., which must be less ;1
tnan 1.00 for discrimination of target from background using i$
.Y
the recorded radiance ratios R, = L /LA and RB = LB /Ly at .
S RS 2 °1 ]
the ¢5% confidence level (equation 5.13) is given by:
t \ %
0.5,m-1 s + s
Vm RK/A RR B )
D.F = < (5.19)

S - S
RR A <RR B

Calculations of D.F. were made and tabulated. Here, as for the single
band calculations, samples of 20 pixels were assumed to exist in the

target and in the background areas. For bandl (3.5-4.ipm) the atmos-
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Starting 1rom this point, we may use arguments simiiar
to those embodied in equations (5.7) and (5.8) to deduce
that the major contribution to the variance in the ratio
between bands 1 and 2 of the radianc2 from target A may De

attributed to atmospheric transmission variation.

That is,
L. c T
R oo 2 _ BBy - Ay .2 ]
A L c (5.154) :
2 | \ -
\ 1,
SRR=<3R 5. s_ .+ (5%5) S S, Lt 20 /3%B>.(—§5‘.<ST .r So . \ = -
3Ty 171\ 272 \°T1) \ar,/ | T2"2 1) . -
(5.16)
€
A
since the wvariation in EA and in EA is such that —= is
2 1 “a,

always constant and since BB12 and BB11 are physical constants

which depend only on blackbody temperature. We may obtain an

estimate of the sample variance in the radiance ratio for target A:

1 1 Y
2 2 .
B D) o 0)® o
BB, EAI Tf T Ty Ty 7

- q\ . \- ..o..

. NS . PR ‘. . L .
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rurtuer modelling calculations were performed on tns
ratio of the radiance from the target, compared to that from

tne background in two different bands. That is, the ratio:

L B €A -
A 12 ~
_ B : 22 (5.15)
L B : -
Aq 11 A1 1

whnere %A is the radiant emittance from target A in band 2
2

(11.0-12.0 um) and LA is the radiant emittance from
1

target A in band 1 (3.5-4.1 um). Bq, is the blackbody
radiant exitance rrom target A in band 2 while Bll is th

blackbody radiant exitance from target A in band 1.

@

If ¢ and ¢ are the average emissivities of the
Al Ag
target A in bands 1 and 2, then, from tne work of (e.g.)

Maxwell302 it is reasonable to assume that there 1is little

cavelength dependence of the emissivities, so that;

€
)
= 1.0 (approximately)

£,
a1

Further variations in €4 will be veryv cirengly correlated
)

co those in €p. 0 SO that the ratio;
-1

will change very little with variations in Ep' the same rea-

o

-oning mav be spnlied to the emissivitv of tarecet B.

MR O i s e Y

. s i}
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't'll"
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Three graphs are shown oI the sane calculations at different
! rotations, in order to best present detail. Like calculations
were performed for the 11.0-12.0 um bandpass. Examples of

these calculations are shown in Figs. Bl to B6. Figures Bl

through B3 show calculations of D.F. as a function of (TA,

(1 - sA)) at different rotations about the vertical (D.F.)

axis where t = 1.00 and eg = 0.90. Figs. B4 through B6 show
i similar calculations, with like rotations about the D.F. axis,
for 1 = 0.60 and eg = 0.85. The D.F. peaks where target and
background emissivities are similar, especially at target tem-
peratures close to that of the background, as one would expect. R
: However, discrimination of target from background with even %ﬁﬂ
turbid, variable atmospheric transmission and with variable g
target and background emissivities appears possible, for some L
circumstances even with temperature differences as small as 1 s

degree Kelvin. The three-dimensional plots show the inter-

active effect of target-to-background emissivity contrast and

l temperature differences, for different atmospheric transmissions.
. . . . - o |.’ J
. As expected, the higher atmospheric turbidity and higher RS
\ -
R
. '.\
" atmospheric variability yielded a larger D.F.. Where the Lol
" tenperatures and emissivities of target and background were e
.\',-
similar discriminazion was impossible. The variation of the Tiﬁ
recorded exitance would cause blurring of the characteristic li
} . . J
radiant exitance vs. wavelength curves for both target and 3
,\ .
background. The closer the emissivity values, the closer ,i:
(and less seperable) the curves. 'b:
. a8
} -y
" ~-‘l
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In calculiazici. perrformed, the covariance term was
always small. The target temperature was allowed to vary at
1 2egree o lucrements from 265K to 285K . The backgrouna
TemieraTuire was always  taksn to be 275K . The target
emissivity was allowed to vary at 0.10 increments from 0.0%
to 0.95. The emissivity of tnhe opackground w2s taken to
be .85 and (in a separate run, C.9%5. Atmcspneric
transmission was taken to pe 0.60 o 1.0¢ in 0.10
increments. The coefficient ot variation (standard
deviation divided by the mean) for the emissivities was
taken to be 0.05, while that of the atmospheric transmission
was taken o Dbe 0.0% also. Selected examples of the
results of these comprehensive calculations for the bandpass
3.5-4.1 'm are shown in Figs. Al to A6. For each data piot,
the discrimination function (D.r.) is shown as the verticeal
axis, while the two herizontal; mutually orthogonal axes
are tarzet temperature (TA)(temperature of background (TB)
alwars assumed equal to 275K ) and (1 - £,). Figs. Al
through A3 show, for different rotations about the vertical

(D.F.) axis, the value of D.F. plotzed 2s¢ & funciim of

(T.., (1 - -.)). For these caiculaticns ¢, = €0 and atmus-
A A B
sheric transmission t = 1.00. Figs. A4 Cchrou .t A6 show

similar caltulations, with like rotations about the D.F.

axis, for 7 = 0.70 and = 0.85. Each plot of D.F. as a

"B

function of (TA, (1 - EA)) is plotted for selected constant

background emissivity and atmospheric transmission values.
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Now, as discussed in section 3, the half-width of the
95 percent confidence interval (or of any other pre-selected
confidence 1interval) on the mean radiance difference from
samples of pixels taken over target and background must be
greater than the difference in the mean radiance levels (for

the bandpass used).

(5.13)

must be smaller than 1.0 for discrimination to occur. We
considered samples of 20 pixels in computing the student t-

factor t 0.5 m for the 95% confidence interval;

?

W

t m~1 -
0.5,21) s ., S =H.w.{tA-LB} (5.14)

Thus the discrimination function (D.F.) may be calculated

from equations (5.11) - (5.14).
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Thus, for a single bandpass:

2 2
NEN 3L, 3L, 3L,
SpL | — S, + {2 S, +t2—2 —21]. s
A“A 3e, Afa at de, 3t €A T
2 2
3L 3L 3L 3L
S
LBLB = —B . SEBEB + B . srr + 2 —B . B . s: T
3£B T 3 at 8 (5.10)
€B

from equations (5.5) - (5.10), the sample variances in the
radiance recorded from target and from background in a

selected band are, respectively:

2 2, . - - 5(S_ - %
LALA st~ - BB - S + BBlr STT + ZEA T BBlr “(STT SE € )

(5.11)

2
2 eqe 2, . X
+ S5 + - BB - 8 + 258 T BBZr p(S S )

T - BB 2r Tt

€
LBLB 2r €a€p B
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2o while that from the background was:
£ . (5.6)
Br BR T . 882r
€ = emissivity of the target A in bandpass r.

Car = emissivity of the background B in bandpass r.

1 = atmospheric transmission in band r.

o
o
I

1r blackbody emissivity for the target (l) at temperature T,

BB2r = blackbody emissivity for the background (2) at temperature T2

It may be shown (e.g. 69, 58

) that where a dependent
variable (v) is a function of two other variables (x,y),

then the sample variance in the dependent variable (v) is

given by:
v 2 3V Vv LAY
SVV = . Sxx +|—}. S y +[— }. {t—]. Sx + lower
oxX 3y y X Ay y order
terms
(5.7)

rere the terms of a lower order ¢f magnitude are generally
negligible where the coefficient of variation of each oi the »ii
L: variables «, y is less than about 0.20 and the covariance may ifl
- o
- be expressed using the well-xknown formula: o
- ) o]
[ J
3 S,, =»p s )% s )% X MF‘
- Xy " \%xx) 0 Uy (5.8 o
o where o 1is the correlation coefficient between the two 3 y
r. sacple distributions. RO
. s
s.'_: . ..1
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ditfferent t:ndpaczecs,

(14) showed that

Studies of the Infrared Handbook
atmospheric transmission 1is maximum in the regions 3.5-4.1
um and 10.0-12.0 um. For the purposes of this study, we
have, for reasons of time, restricted our attention to
target discriminability in each of the bands 3.5-4.1 .m and
11.0-12.0 vm and for the ratio of the radiance recora=zi in
these bands. We considered the effect of random variations
in target and background emissivities and in atmospheric
transmission on the discriminability of target from
background. The case of the thermal infrared region may be
seen from the general principles referred to in section 3 to
be simpler than the optical-reflective regicn: scattering
processes cause fluctuations in target 1illumination, with a

consequent effect on target radiance fluctuation only in the

optical-reflective region.

We considered first the case where a target was to be

discriminated from background in each of the above-mentioned

b .
;‘ two bandpzsses. Here the radiance from the target wzs:
i
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This expression may be written as:

- -5
My =€ A (5.2)
C
exp{— -1
AT
_ 2
where Cl = 2rhC
and C2 = hc
k
The total (i.e., integrated over the electromagnetic

spectrum) radiant exitance of a blackbody is given by:

c 4
G i i
Myogr =—— . —1— . T' (Wm7?) (5.3)
o 15
2

Of course, the quantities wused in the above expressions
could just as easily be expressed in c.g.s. units, so that Mi

and Mpgr would appear in c.g.s. units.

The in-band radiance M,, 1s approximately expressed as:

C (=]
M, = %1 4 1
A —_— =
b . 4 @+ 3mn? s enr + e
C
2 n=1
. (5.4)

This expression was wused to calculate tabular values of

blackbedy exitance for different temperatures and for
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In this case, because of the broad aims of the study,
it has been decided to wuse the assumption that tne targe=z
and background act as Lambertian greybodies with almest

wavelength-independent emissivities at any given wavelength.
302

¢ (e.g. ). This is a simplistic assumption. However, for .
- first-order calculations, in the light of conversations with ?
! several researchers in the fiecld and after a perusal of :;
available unclassified literatube, this was considered to be T%

a reasonable starting point. ;3

The Planck radiation law may be used to calculate the gj

total radiant exitance of a blackbody at a selected . ;ﬂ

--'4

temperature. This is shown in equation (5.1). -

2

. 2zhe? 1 )

N X = S -‘J

A exp {hc } -1

KAaT) - (5.1) o

i~

—

where M, 1is the energy radiated per unit wavelength per ij

. , -
= second, per unit area of the blackbody (W 2 50-1 ) (radiant exitance) ]
b o
= =
ﬁaF h = Planck'sconstant (J sec ") ;ﬁ
:&; ¢ = speed of light (m sec'l) ﬁf
[if k = Boltzmann constant (J °K-1) ]
L )

i‘, A = wavelength ) 5
:i- T = absolute temperature (°K) ﬂ
< 7
b . '_‘
[ 3
—
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scene hetercgeneity, atmospheric transmission fluctuations,
77-89

39 ~-d

accumulation of scene elements, each of which has 1its own fé
=

angular anisotropy, considerable difficulty may arise in :32
consistent target detection, discrimination, tracking and ;ﬁ
quantification, depending upon the location of the target iﬂ
with respect to the maximum of the point spread function of 55
each detector element, if the target occupies less than 1 or Efﬁ
2 pixelé. Preliminary studies have shown that there are pos- :j
sibilities of improving contrast enhancement by dynamic viewing 5}
or "dithering" (e.g. 282) the two dimensional array. At present, :?f
very few studies have been reported in the unclassified liter- ii
ature. There is a real need to be aware of the interaction of ::
oS

obscurants , and target aspect with the sensing device in
order to be able to define the optimum parametric envelope for
target discrimination, detection, tracking and quantification.

Much more work appears to be needed here.

5. MODELLING STUDIES

A considerable body of theory exists for the modelling

of the . interaction of electromagnetic radiation with

dielectric media. Generally, these models have been

idealized (e.g. 14, 302-326).
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varying point spread function fror deifcecrer cicent to
detector element. However, the advantages of such & system
are that it does not entail moving components such as the
oscillating mirror or rotating mirror utilized in scanning
devices and should therefore have enhanced reliability. It
is suggested that the success of such devices will rely
heavily upon the development of adequate onboard preproces-
sing facilities (smart sensor devices-e.g. 157).

A staring array consists of a two-dimensional matrix of
either quantum detectors (such as silicon) or of pyro-
electric detectors which record information in the optical
rerlective, mid-infrared or thermal infrared parts of tTne
spectrum. In the cases where cnarge coupled devices (CCD's)
or charge inJection devices (ClD's) are wutilized, most of
the area occupied by the array can consist purely of sensing
elements. Where the photodetectors and the circuitry
involved in transferring tne charge to different registers

v 50% of the

-

is located on a single plane, then perhaps onl

N
"rea. estate" of the array element may be occupied by ]
zencere. Tne dizadventzges of tne two-dimensional array are -4
)

thne  =ame 25 nmentioned for the multispectral pushbroom .
)

scanner. The point-spread function may look something like

i;"‘.:‘.".

that shown in Figure 13 for each element of the array.

-3

There may be slight differences from element to zl2ment, and

A vI
[
o Fony

m
——aas

there may be slight differences 1in the absolute calibration

(radiometirically) of each element. Thus, when a staring

ol

RITIE NiE AN)

o array Jizws a Stene consisting of a heterogeneous

T
- ‘.l.
By
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i%- Fig. C3 shows a case where the coefficiencs of variation E:
f; for q and 1, are 0.05 and where the correlation coefficient >
ii>' between radiance recorded in the twe bands is 0.90: clearl:, 2
}:' an increased correlation between radiance recorded in bands :ﬁ
= 1 and 2 (3.5 - 4.1 and 11.0 - 12.0 um) increases the dis- _—j
;S criminability of target from background (reduces D.F.). 1In #5
4%; ceneral we found that as might be expected, the more variable gé
ic the atmosphere, the larger D.F.. However, the discrimination ;€
function (D.F.) is generally < 1.0 where the target temper- ;3
ature is within 1° K of that of the background. ;é
-3
o It is significant that discrimination is independent of —
. target/background emissivity contrast using the ratio method ‘E
tfi and that for target/background contrasts of 19K (or less) ;
1 discrimination appears more probable at the 957 confidence _%
f ltevel than for either of the single bands, for the levels ;5
. of atmospheric turbidity variance considered. Thus, the f;
é) ratio method would appear superior to the single-channel ;%
:31 nethod and would seem to be free of the dependence on ;S
T Ty
Ny emissivity variation. 3?
‘ -3
;. .
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©. CONCLULSIOLE, RECOMHENDATIONS AND SUGGESTIONS FOR FURTHER

WORK

Here, we present the conclusions drawn from this study,
plus general suggestions which one of us (MJD) has long
thought necessary steps in a research program toincrease the
accuracy of target detection, classirlication, quantiiication

and tracring.

1. The discrimination of targets from background under

o the selected atmospheric conditions used in the modelling
calculations demonstrates the feasibility of detection Zfor -

small (e.g. 1 degree Kelvin = 1°C) temperature differences.

It appears that, for atmospheric transmission and grounc
emissivity random variations which may be expected the

technique of using ratioed radiance values for the bandpasses

3.5-4.1 vm and 11.0 - 12.0 um for reasons discussed above

offers advantages over the discrimination possible using

radiance data recorded in either of the single bands 3.5 -

T

.1 . oand 11.0 - 12.0 ..m.

ul

ﬁf 2. Real +time contrast enhancement using histogram
i. stretching,_ geometric stretching or other contrast
E_ enhancement techniques with micro-chip technology appears to
;; be a possibility, providing that the target occupies that
@ portion of the instantaneous field of view (IFOV) which has

.y
A :
. i

the maximum point spread function: (an area which needs

Ptk
. >

rezearch). Cleavle if the =arpet is smaller than the pixel
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(IFOV at ground level) thea the contrast between the pixel containing

the target and the pixels containing only background

material will depend wupon the position of the point spread

function with respect to the target. This is an area which
needs considerable study. It 1is suggested that 1little data
exists on the point spread function of any detecting device
and that little 1is known about improvements 1in contrast

between target containing pixels and background pixels using

dynamic viewing or "dithering" techniques. This area is a ii
major gap 1in present technology and must be closed, -
>

otnerwise predictable discrimination, 1identification and

quantification of targets may not be possible. o]

5. The inherent polarization of detection devices is a

relatively unexplored field. Work in the optical reflective

287-301

region (e.g. ) shows target radiance to be polarized:

studies performed in 1974 by Maxwell et al in the emitted
302

N T
O

infrared part of the spectrum show polarization to

(]
e’

oy Ty
.

e I

1Y, N
M

exist in an angularly anisotropic manner in the thermal

e infrared region. Although considerable angular anisotropy ;
. [N
B in polarization differences with vertical and horizontal S‘
; polarizations have been detected, little is apparently known >
h’ about the interaction of such polarized scene radiance with

i inherent sensor polarization effects: indeed inherent polarization

; of detectors appears to have received little attention.

.
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Quantitative measurements are necessary here in order to

e
PP PSP

ensure predictable accuracy of targeting data. It is

essential that the interaction of polarized scene radiance,

.3

. -y
.

the depoiarizing effect of the atmosphere, the polarized sky -

Faw j

Y

radiance and the inherent polarization of the sensing -

s
LI IR
[ RS,

F

devices be investigated to provide optimum targeting data.
That 1is, it 1is essential to minimize failure to detect
targets, to minimize misclassification of targets and <o
utilize all potentially available information to detect,

quantify and track targets.

4. The possible combination of multiband approaches in

which polarization effects are wutilized appears attractive,

since polarization differences 1in scene radiance or in
target versus sky radiance are markedly greater in the
ultraviolet part of <the spectrum as compared to, for
example, the emitted infrared part of the spectrum. Such

considerations are, it is suggested, of vital importance in

horizon and nadir-viewing sensors based on satellite or high

W'Y”'vrw'v"'v*
[ .
‘. o .
- e 0, N

altitude airborne platforms. They may also be of use in

—
L

4 "Thv—frv
' ST e,
K P

skytracking camera and in missile terminal guidance systems.

5. The utilization of staring sensors to detect target

motion necessitates the knowledge of the point-spread

ey

function of each element of the array or of any other device

g

ﬁ. which is wused to image a scene. This is because a movement
E“ of " less than 1 pixel 1in sensor pointing will change the
ET radiometric and spectral signature from the scene because of
_’ the movement of the point-spread function with respect to &f
E; the targzt/background composite scene. Et;
.é ;j
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6. The effects of scene obscurants and their
interaction with elements of two-dimensional arrays needs to
be further studied. Clearly, each element will have a
slightly different absolute radiometric sensitivity,
spectral response, inherent polarization (especially in the
case of ferroelectric pyroelectric devices) and also point
spread function. Such inter-detector differences can lead to

errors in an image.

7. Cirrus and unresolved cloud, as well as localized

obscurants will manifest themselves as scene elements (i.e.
components of a heterogeneous pixel). The effects of these

components upon radiometric signatures needs considerable

study in so far as it effects target detection, tracking and

'&i‘ quantification. Modelling studies would be inexpensive and

[ a logical first step.

P«'?"

?;‘ 8. A model for the two-dimensional array in which the

Eﬁ; point-spread functions are mapped in a two-dimensional

E{? diagram is necessary before it is possible to determine the

g’u optinmum method of dynamic viewing. It 1is suspected that

. this will depend upon the angular viewing regime and upon

-0

{ng the target-to0 - background contrast as well as wupon the

r' portion of the pixel occupied by the target and upon target
aspect.
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9. Further modelling studies should be performea and

should integrate terrestrial vegetation emittance models in
order to predict parametric envelopes for optimum data
acquisition and analysis. For reasons discussed in section
3, 1t will be necessary to model sensor output for each
sensor element in a two-dimensional array, pushbroom array,

4

or scanning device so as to take 1into account the
radiometric point or line spread functions spectral
response, polarization characteristics, detector noise, and
the interaction of each of these parameters with spectral
scene radiance. The importance of the difference in angular
anisotropy in scene radiance from each scene component will
depend upon the point-spread function of each scene element.

Models of typical arrays could be used mathematically to

predict optimum dynamic viewing conditions to optimize target-

to-background discrimination under different atmospheric and
meteorological conditions, for different geographical regions
and for different sensor types. Further, utilizing the tech-
niques of modelling studies could suggest possible new sensor
combinations to optimize target discrimination, tracking and

quantification.

10. It 1is strongly recommended that this work be

continued and that modelling studies incorporating some or

all of the above be pursued as a matter of urgency in order




e T LA A R A o " AR S M S e At et e et S & e datt et - Aoh e B0t B Rk -:,ﬂ:;ﬂv_:‘v_-:-\j_ﬂ:\-v
-
&
™
~ N
-"’l
o

to better define optimum parametric envelopes for optimal
data acquisition and real-time processing. It has been
shown that targets and backgrounds which are similar in
temperature may be discriminated under a variety of
atmospheric conditions. The suite of data used in such

studies should be  expanded, the models made more

T B EAUEI S
Tl et e B N N A Cy e e e

sophisticated so as to include spectral and point-spread

|

function information on <the sensing devices, Random and

systematic error sources described above should also be
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further investigated in order to determine their effects on
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target detection, tracking and quantification accuracy.
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Fig. 1.

. Fig. 2
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FIGURE CAPTIONS

Overall picture of 1interactions between incident
and reflected radiance, the atmosphere and the

earth's surface.

Interactions between solar radiance and the earti's

atmosphere.

Nomenclature for the interactions of light energy
at the earth's surface. Hemispherical-directional

reflectance.

Angular notation relating 1incident and reflected

radiance. Bidirectional reflectance.
Angular notation for reflected target radiance.

Wavelength dependence and view zenith angle
dependence of bidirectional reflectance factor for
wheat at boot stage, for solar zenith and azimuth

angles typical for NOAA-6 ephemeris. The LARSPEC

36,70
data base was used in this calculation .

The relationship between 1incident, absorbed and

reflected radiance.

<

The relationship between radiance from the target,
absorbed radiance and radiance scattered from the

beam to the sensor.
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Fig G. Wavelength dependence of those factors which
determine sensor output. ,*4
Fig. 10. Showing that two sensors with the same nominal f{%
half-power and zero-power bandpass values and 5;5
wavelength 1limits can differ so as to proauce ifd

different sensor outputs when viewing the same

target.

Fig. 11. Flow <chart showing those factors controlling
variations in sensor output in the optical

reflective part of the spectrum.

Fig. 12.Flow chart showing those factors controlling
variations in sensor output in the thermz! iInfracred

part of the spectirum.

Fig. 13. The superposition of a hypothetical contoured
point-spread function for a detector on a
heterogeneous pixel, showing that the movement of
the instanteous field of view by a fraction of a

pixel can change the sensor output.

14. The dependence of the vegetation index contrast

[41]

ratio (VHQMAX/VINMIN) on view zenith angle and on
the percentage of unresolved cloud in the IFOV over
the targets to be distinguished (percentage of
cloud assumed to be the same 1in each case). Here

(VIN = AVHRR2/AVHRR1) and the atmosphere 1is clear

(meteorological range > 50 kn).

------------
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15.

16.

The dependence of the contrast ratio (VINy,x/VINpn)

on view =zenitn angle and on the percentags of
unresolved cloud in the IFOV over the targets to be
distinguished (percentage of cloud assumed to be

the same in each case). Here (VIN = AVHRR2/AVHRR1)

and the atmosphere is turbid (meteorological range <

10 km).

The relationship between emitted thermal target

radiance, atmospheric extinction and radiance

incident on the sensor.

Al-A3. The calculated relationship between the dis-

criminability function (D.F.) for detector
bandpass 3.5-4.1 .m, target temperature T,
and (1 - EA) where ¢, = target emissivity
for background temperature Ty = 275°K, back-
ground emissivity €g = 0.90 and atmospheric
transmission v = 1.03. The degree of varia-
tion in emissivity and atmospheric transmis-
sion considered is discussed in the text.
Three different rotations of the same calcu-

lated data are shown.

A4-A6. Similar to Figs. Al-A3, but for 1= 0.70 and

€g = 0.85. .

B1-B3. Similar to Figs. Al-A3 but for detector bandpass

11.0 - 12.0 um: t = 1.00 and eg = 0.90.

B6. Similar to Figs. Bl-B3 but for t = 0.60 and
e, = 0.85,
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Fig. Cl. The discriminability function (D.F.) is shown as a o

1z

function of the ratio of the atmospheric transmission ;\ﬁﬂ
values 7, and 7, in two bandpasses and as a function hiﬁ;
ind oo

of target temperature Ty- The correlation coefficient o]
between the radiance recorded from the target in each hfﬁ
bandpass is taken to be (.1 Here the coefficients :E;;
of variation in the emissivities of target T and ;;;
of background g and in atmospheric transmission _ﬁ
.

values Ty, T, are taken as 0.01. The emissivity : }
of the target is assumed to be spectrally invariant. giz
el

C2. As Fig. Cl but with the coefficients of variation in

res
P
9,0}

€xr Spr 11 and Ty = 0.05.

Fig. C3. As Fig. C1 . but with the correlation coefficient
between the radiance values recorded from the tar-
get in bands 1 and 2 (3.5 - 4.1 ym and 11.0 - 12.0 pm

respectively) taken to be 0.90.
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; Rome Air Development Center -
RADC plans and executes nesearch, development, test and S
selected acquisdition proghams in Auppolbt 0§ Command, Control ]

A Communications and Intelligence (C31) activities. Technical :

: and engineerning support within areas of technical competence ""']

| {8 provided to ESPD Program 0fgices (POs) and other ESD , CoL
elements. The principal technical mission areas ane . -
communications, electromagnetic ,uldance and contrnol, sun- 0 Lo
veillance of ground and aerospace obfects, intelligence data ¢ _—

. collection and handling, information system technology, Lo J

R Lonosphenic propagation, solid state sciences, microwave —

) physics and electrnonic neliability, maintainability and .
compatibility. ‘
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